ON A CLASS OF DIFFERENTIAL GAMES WITH AN INTEGRAL CONSTRAINT

PMM Vol. 41, №5, 1977, pp. 819-824
V.I. UKHOBOTOV
(Cheliabinsk)
(Received February 6, 1977)

Abstract

Some method of constructing a u-stable bridge is described. A class of games with an integral constraint is indicated, in application to which this method permits the construction of the u-stable bridge in an explicit form. Following the scheme presented in [1-3], the first player's strategy extremal to the u-stable bridge can be constructed, ensuring that the game's position hits the terminal set.

1. The motion of vector z in a k-dimensional Euclidean space R^{k} is subject to the equation

$$
\begin{equation*}
z^{\bullet}=C z+N u+v, \quad u \in R^{l}, \quad v \in Q \tag{1.1}
\end{equation*}
$$

Here C is a constant $k \times k$-matrix, R^{l} is an l-dimensional Euclidean space, N is a constant $k \times l$-matrix, Q is a convex compactum in R^{k}. The integral constraint

$$
\begin{equation*}
\mu(t)=\mu_{0}-\int_{0}^{t}|u(\tau)|^{2} d \tau \geqslant 0 \tag{1.2}
\end{equation*}
$$

is imposed on the choice of control u. Here $|u|$ is tine Euclidean norm of vector u and μ_{0} is some positive constant. The set of numbers $\mu \geqslant 0$ is denoted by I. Then $R^{k} \times I$ implies the direct product of R^{k} and I and the game position is a point $[z, \mu]$ from $R^{k} \times I$. An m-dimensional Euclidean space $R^{m}(m \leqslant k)$ and a linear mapping π of space R^{k} into R^{m} are assumed given.

A terminal set Z is singled out in $R^{k} \times I$, having the form:

$$
\begin{equation*}
Z=\{[z, \mu]: \pi z=0, \mu \geqslant 0\} \tag{1.3}
\end{equation*}
$$

In order to formulate a u-stability condition [1-3] in a form convenient later on, following [4] we introduce a multiple-valued mapping $T_{\sigma}(X)$.
Let X be some closed set in $R^{k} \times I$ and let $\sigma \geqslant 0$. Then $T_{\sigma}(X)$ is the set of positions $\left[z_{0}, \mu_{0}\right]$ for each of which we can find, from any control $v(t) \in Q$ measurable on the interval $[0, \sigma]$, a measurable control $u(t)$ satisfying constraint (1.2) for $0 \leqslant t \leqslant \sigma$, such that $[z .(\sigma), \mu(\sigma)] \in X$. Here $[z(\sigma), \mu(\sigma)]$ is the game's position at the instant σ.

For a given number $t_{1}>0$ we are required to construct a family of non-empty closed sets $W(t) \subset R^{k} \times I$, defined for $0 \leqslant t \leqslant t_{1}$ and satisfying the conditions $W(0) \subset Z$ and

$$
\begin{equation*}
W(t) \subset T_{\sigma}(W(t-\sigma)) \quad \text { for } \quad 0<\sigma<t \leqslant t_{1} \tag{1.4}
\end{equation*}
$$

Mapping T_{σ} `possesses a number of properties [4]. The following properties will be used in Sect. 2.

Property 1. $\quad T_{\sigma_{1}}\left(T_{\sigma_{2}}(X)\right) \subset T_{\sigma_{1}+\sigma_{2}}(X)$
Property 2. $T_{\sigma}(X) \subset T_{a}\left(X_{1}\right)$ when $X \subset X_{1}$
Property 3. If X is closed and $T_{\sigma}(X) \neq \varnothing$, then $T_{\sigma}(X)$ is closed.
2. We describe one method for constructing a u-stable bridge. Let a closed set Y be given in a q-dimensional linear normed space R^{q}, with the norm $\|y\|$, $y \in R^{q}$. We assume that a nonempty closed set $B(t, y) \subset R^{k} \times I$ has been defined for each $y \in Y$ and $t \geqslant 0$.

Condition A. If the sequence of vectors $y_{n} \in Y$ converges to vector $y \in Y$ and the point $[z, \mu]$ belongs to set $B(t, y)$, then there exists a sequence of points
$\left[z_{n}, \mu_{n}\right] \in B\left(t, y_{n}\right)$ which converges to point $[z, \mu]$.
Let a number $\varepsilon>0$ be given and let a function $f(\sigma, t, y)$ with values in set Y be defined for any $y \in Y, t \geqslant 0,0<\sigma \leqslant \varepsilon$. Condition B. The inclusion $T_{0}(B(t, y)) \longrightarrow B(t+\sigma, f(\sigma, t, y))$ is fulfilled for any $y \in Y, t \geqslant 0,0<\sigma \leqslant \varepsilon$.
Condition C. A continuous q-dimensional vector function $F(t, y)$ is defined for all $y \in Y$ and $t \geqslant 0$, such that the equality

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left(f\left(\sigma_{i}, t_{i}, y_{i}\right)-y_{i}\right) / \sigma_{i}=F(t, y) \tag{2.1}
\end{equation*}
$$

is fulfilled for any sequences of $y_{i} \in Y, t_{i} \geqslant 0$ and $0<\sigma_{i} \leqslant \varepsilon$ converging to y, t and 0 , respectively.

Theorem 1. Through the point $y_{0} \in Y$ let there pass the solution $y(t) \in$ Y, unique on the interval $\left[0, t_{1}\right]$, of the Cauchy problem

$$
\begin{equation*}
y^{\cdot}=F(t, y), \quad y(0)=y_{0} \tag{2.2}
\end{equation*}
$$

Then the family of sets $W(t)=B(t, y(t))$ satisfies inclusion (1.4).
Note. The uniqueness of the solution $y(t)$ for $0 \leqslant t \leqslant t_{1}$ is understood in the sense that if $y_{1}(t) \in Y$ is a solution of problem (2.2) for $0 \leqslant t \leqslant t_{2}$ and $t_{2}<t_{1}$, then $y_{1}(t)=y(t)$ for $0 \leqslant t \leqslant t_{2}$.

Proof of the theorem. We fixa number $\gamma>0$ and we consider the closed bounded set

$$
\begin{equation*}
Y_{1}=\left\{y \in Y:\|y-y(t)\| \leqslant \gamma \quad \text { for } \quad 0 \leqslant t \leqslant t_{1}\right\} \tag{2.3}
\end{equation*}
$$

As follows from Condition C, a number $0<\varepsilon_{0} \leqslant \varepsilon$ exists such that

$$
\begin{align*}
& \|f(\sigma, t, y)-y\| \leqslant(\sigma \gamma) / \varepsilon_{0} \quad \text { for } \quad y \in Y_{1}, \quad 0 \leqslant t \leqslant t_{1} \tag{2.4}\\
& 0<\sigma \leqslant \varepsilon_{0}
\end{align*}
$$

We take any numbers $0 \leqslant t_{0}<t_{2} \leqslant t_{1}$ satisfying the condition $\sigma=t_{2}-t_{0} \leqslant$ ε_{0}. Let us show that

$$
\begin{equation*}
T_{\sigma}\left(B\left(t_{0}, y\left(t_{0}\right)\right)\right) \supset B\left(t_{2}, y\left(t_{2}\right)\right) \tag{2.5}
\end{equation*}
$$

From this it will follow that the set $W(t)=B(t, y(t))$ satisfies inclusion (1.4) for $0 \leqslant t \leqslant t_{1}$ and $0<\sigma \leqslant \min \left(\varepsilon_{0} ; t\right)$. Applying properties 1 and 2 of mapping T_{σ}, we can have that inclusion (1.4) is fulfilled for all $0<\sigma<t \leqslant t_{1}$.

We partition interval $\left[t_{0}, t_{2}\right]$ into n equal parts of length $\sigma_{n}=\sigma / n$, and consider the finite collection of vectors

$$
\begin{equation*}
y_{n}(0)=y\left(t_{0}\right), \ldots, \quad y_{n}(i)=f\left(\sigma_{n}, t_{0}+i \sigma_{n}, y_{n}(i-1)\right), \quad i=1, \ldots, n \tag{2,6}
\end{equation*}
$$

As follows from Condition B and from properties 1 and 2 of mapping T_{σ}, the inclusion

$$
\begin{equation*}
T_{\sigma}\left(B\left(t_{0}, y\left(t_{0}\right)\right)\right) \supset B\left(t_{2}, y_{n}(n)\right) \tag{2.7}
\end{equation*}
$$

is fulfilled for each n. According to property 3 of mapping T_{σ}, the set consisting of the left-hand side of inclusion (2.7) is closed. Therefore, as follows from Condition A, to prove inclusion (2.5) it is sufficient to show that some subsequence of the sequence of vectors $y_{n}(n)$ converges to vector $y\left(t_{2}\right)$. For each n the vectors (2.6) possess the following properties

$$
\begin{equation*}
y_{n}(i) \in Y_{1}, \quad\left\|y_{n}(i)-y_{n}(i-1)\right\| \leqslant\left(\sigma_{n} \gamma\right) / \varepsilon_{0}, \quad i=1, \ldots, n \tag{2.8}
\end{equation*}
$$

These properties are proved by induction over i with the use of inequality (2.4) and of the definition of set (2.3).

For $t_{0} \leqslant t \leqslant t_{2}$ we define the polygonal line

$$
\begin{align*}
& x_{n}(t)=y_{n}(i-1)+\frac{y_{n}(i)-y_{n}(i-1)}{\sigma_{n}}\left(t-t_{0}-(i-1) \sigma_{n}\right) \tag{2.9}\\
& (i-1) \sigma_{n} \leqslant t-t_{0}<i \sigma_{n} \\
& x_{n}(t)=y_{n}(n) \text { for } t=t_{2}
\end{align*}
$$

The function $x_{n}(t)$ is continuous for $t_{0} \leqslant t \leqslant t_{2}$ and, as follows from inequality (2.8), $\left\|x_{n}{ }^{\prime}(t)\right\| \leqslant \gamma /{ }^{\prime} \varepsilon_{0}$ for almost all $t_{0}{ }^{\circ} \leqslant t \leqslant t_{2}$. Hence it follows that function $x_{n}(t)$ satisfies a Lipschitz condition with constant γ / ε_{0}. Therefore, the sequence of functions $x_{n}(t)$ satisfies the hypothesis of Arzelá theorem. Therefore (passing, if necessary to a subsequence), we can reckon that the sequence $x_{n}(t)$ converges to some function $x(t)$. The limit function $x(t)$ also satisfies a Lipschitz condition with the same constant γ / ε_{0}. Therefore, its derivative exists almost everywhere for $t_{0} \leqslant t \leqslant t_{2}$. In addition, it follows from inclusion (2.8) and from the first
equality in (2.6) that

$$
\begin{equation*}
x\left(t_{0}\right)=y\left(t_{0}\right), \quad x(t) \in Y_{1} \subset Y \quad \text { for } \quad t_{0} \leqslant t \leqslant t_{2} \tag{2.10}
\end{equation*}
$$

Let us show that

$$
\begin{equation*}
x^{*}(t)=F(t, x(t)) \quad \text { for } \quad t_{0} \leqslant t \leqslant t_{2} \tag{2.11}
\end{equation*}
$$

Let the derivative $x^{*}(t)$ exist at the point $t_{0} \leqslant t<t_{2}$. The equality

$$
\begin{equation*}
(x(t+h)-x(t)) / h=\lim _{n \rightarrow \infty} \int_{0}^{1} x_{n}{ }^{\cdot}(t+h \tau) d \tau \tag{2.12}
\end{equation*}
$$

is fulfilled for any $0<h<t_{2}-t$. From formulas (2.6) and (2.9) it follows that the equality

$$
\begin{align*}
& x_{n^{\bullet} .}^{\cdot} .(t+h \tau)=\left(f\left(\sigma_{n}, t_{0}+\tau_{n} \sigma_{n}, x_{n}\left(t_{0}+\tau_{n} \sigma_{n}\right)\right)-x_{n}\left(t_{0}+\right.\right. \tag{2.13}\\
& \left.\left.\tau_{n} \sigma_{n}\right)\right) / \sigma_{n}
\end{align*}
$$

is fulfilled for almost all $0 \leqslant \tau \leqslant 1$. Here τ_{n} denotes the integer part of number $\left(t+h \tau-t_{0}\right) / \sigma_{n}$. Since the number sequence $\tau_{n} \sigma_{n}$ converges to $t+$ $h \tau-t_{0}$ as $n \rightarrow \infty$ and the sequence of functions $x_{n}(t)$ converges uniformly to $x(t)$, we have $\lim x_{n}\left(t_{0}+\tau_{n} \sigma_{n}\right)=x(t+h \tau)$ as $n \rightarrow \infty$. Therefore, from equality (2.13) and Condition C it follows that for almost all $0 \leqslant \tau \leqslant 1$ the sequence of $x_{n}{ }^{(}(t+h \tau)$ converges to $F(t+h \tau, x(t \mid h \tau))$ as $n \rightarrow \infty$. In addition, $\left\|x_{n}{ }^{\bullet}(t+h \tau)\right\| \leqslant \gamma / \varepsilon_{0}$. Consequently, applying Lebesgue's theorem [5] to equality (2.12), we obtain

$$
(x(t+h)-x(t)) / h=\int_{0}^{1} F(t+h \tau, x(t+h \tau)) d \tau
$$

Passing in the latter equality to the limit as $h \rightarrow 0$ and using the continuity of function $F(t, y)$ for $t \geqslant 0$ and $y \in Y$ and also using inclusion (2.10), we obtain (2.11). Therefore, equality (2.11) is fulfilled for almost all $t_{0} \leqslant t \leqslant t_{2}$. From the continuity of function $F(t, y)$ it follows that it is fulfilled foi all $t_{0} \leqslant t \leqslant t_{2}$. Therefore, allowing for relation (2.10) and for the uniqueness condition of the solution of problem (2.2) when $0 \leqslant t \leqslant t_{1}$, we obtain the equality $x(t)=y(t)$ for all $t_{0} \leqslant t \leqslant t_{2}$. Thus we have proved that a subsequence of the sequence of vectors $y_{n}(n)=x_{n}\left(t_{2}\right)$ exists converging to vector $y\left(t_{2}\right)$.
3. We construct a u-stable bridge $W(t)$ for the game in Sect. 1 under the following assumptions:

$$
\begin{array}{ll}
1^{\circ} . & \pi e^{t C} Q=\alpha(t) U, \quad \alpha(t) \geqslant 0 \text { for } \quad t \geqslant 0 \\
2^{\circ} . & \left\{\pi e^{t C} N u:|u| \leqslant 1\right\}=\beta(t) S, \quad \beta(t) \geqslant 0 \text { for } \quad t \geqslant 0 \\
3^{\circ} . & S * v U \neq \varnothing \quad \text { for } 0 \leqslant v \leqslant 1
\end{array}
$$

Here U and S are convex compacta in R^{m} and S is symmetric relative to the origin and contains the null vector as an interior point; $S \# v U$ is the geometric difference [6] of sets S and $\nu U ; \alpha(t)$ and $\beta(t)$ are continuous scalar functions. We note first of all that functions $\alpha(t)$ and $\beta(t)$ can vanish only at isolated points. Otherwise it
can be shown that they are identically zero.
Assumption 4°. Functions $\alpha(t)$ and $\dot{\beta}(t)$ are not identically zero and $\lim [\alpha$
$(\tau) / \beta(\tau)]=\rho(t)$ as $\tau \rightarrow t$, where $\rho(t)$ is a function continuous when $t \geqslant 0$. We introduce the notation

$$
\begin{equation*}
\pi_{1}(t)=\pi e^{i C} \tag{3.1}
\end{equation*}
$$

Then from assumptions 1° and 2° we can obtain

$$
\begin{align*}
& \int_{0}^{\sigma} \pi_{1}(t+\sigma-\tau) Q d \tau=\left(\int_{i}^{t+\sigma} \alpha(\tau) d \tau\right) U \tag{3.2}\\
& \left\{\int_{0}^{\sigma} \pi_{1}(t+\sigma-\tau) u(\tau) d \tau: \int_{0}^{\sigma}|u(\tau)|^{2} d \tau=p\right\}=\left(p \int_{t}^{t+\sigma} \beta^{2}(\tau) d \tau\right)^{1 / 2} S \tag{3.3}
\end{align*}
$$

For each $t \geqslant 0, y_{1} \geqslant 0, y_{2} \geqslant 0$ and $\sigma>0$ we set

$$
\begin{equation*}
B\left(t, y_{1}, y_{2}\right)=\left\{[z, \mu]: \pi_{1}(t) z \in y_{1}\left(\mu^{1 / s} S \neq y_{2} U\right), \mu^{1 / 2} \geqslant y_{2}\right\} \tag{3.4}
\end{equation*}
$$

$f_{1}\left(\sigma, t, y_{1}, y_{2}\right)=\left(y_{1} y_{2}+\int_{i}^{t+\sigma} \alpha(\tau) d \tau\right) \mid f_{2}\left(\sigma, t, y_{1}, y_{2}\right)$
$f_{2}\left(\sigma, t, y_{1}, y_{2}\right)=\left(y_{2}{ }^{2}+\left[\left(\int_{i}^{i+\sigma} \alpha(\tau) d \tau\right)^{2} \mid \int_{i}^{t+\sigma} \beta^{2}(\tau) d \tau\right]\right)^{1 / 2}$
Lemma. $T_{\sigma}\left(B\left(t, y_{1}, y_{2}\right)\right) \Longrightarrow B\left(t+\sigma, f_{1}\left(\sigma, t, y_{1}, y_{2}\right), f_{2}\left(\sigma, t, y_{1}, y_{2}\right)\right)$.
Proof. Let a point $[z, \mu]$ belong to the set on the right-hand side of the inclusion to be proved. Then from (3.4) and (3.6) it follows that

$$
\begin{align*}
& \pi_{1}(t+\sigma) z \in f_{1}\left(\sigma, t, y_{1}, y_{2}\right)\left(\mu^{1 / 2} S \stackrel{*}{2}\left(\sigma, t, y_{1}, y_{2}\right) U\right) \tag{3.7}\\
& \mu^{1 / 2} \geqslant f_{2}\left(\sigma, t, y_{1}, y_{2}\right)>y_{2} \tag{3.8}
\end{align*}
$$

From the definition of mapping T_{σ}, from the form of set (3.4), and also from equalities (3.1) - (3.3) it follows that the point $[z, \mu]$ belongs to set $T_{\sigma}\left(B\left(t, y_{1}, y_{2}\right)\right)$ if the inclusion

$$
\begin{equation*}
\pi_{1}(t+\sigma) z \in\left[\left(\varepsilon_{1} S \stackrel{*}{*} \delta_{1} U\right)+\varepsilon_{2} S\right] \stackrel{*}{*} \delta_{2} U \tag{3.9}
\end{equation*}
$$

is fulfilled for some $p \geqslant 0$ and $(\mu-p)^{1 / 2} \geqslant y_{2}$. Here

$$
\begin{align*}
& \varepsilon_{1}=y_{1}(\mu-p)^{1 / 2}, \quad \delta_{1}=y_{1} y_{2} \tag{3.10}\\
& \varepsilon_{2}=\left(p \int_{i}^{t+\sigma} \beta^{2}(\tau) d \tau\right)^{1 / 2}, \quad \delta_{2}=\int_{i}^{t+\sigma} \alpha(\tau) d \tau
\end{align*}
$$

We now indicate a number $p \geqslant 0$ satisfying the condition $(\mu-p)^{1 / 2} \geqslant y_{2}$, for which the set on the right-hand side of inclusion (3.9) coincides with the set on the right-hand side of inclusion (3.7). We set

$$
\begin{equation*}
p=\mu\left(1-\left[y_{2}^{2} / f_{2}^{2}\left(\sigma, t, y_{6}, y_{2}\right]\right) \geqslant 0\right. \tag{3.11}
\end{equation*}
$$

Then, as follows from inequality (3.8)

$$
(\mu-p)^{1 / 2}=\left(\mu^{1 / 2} y_{2}\right) / f_{2}\left(\sigma, t, y_{1}, y_{2}\right) \geqslant y_{2}
$$

Substituting this value of p into relation (3.10) and using notation (3.6), we can obtain the equality $\varepsilon_{1} \delta_{2}=\varepsilon_{2} \delta_{1}$. Hence it follows that $\varepsilon_{1}=\varphi \varepsilon_{2}$ and $\delta_{1}=\varphi \delta_{2}$ for some $\varphi \geqslant 0$. Therefore, the set on the right-hand side of inclusion (3.9) has the form

$$
\begin{equation*}
\left(\left(\varphi\left(\varepsilon_{2} S\right) \stackrel{*}{-} \varphi\left(\delta_{2} U\right)\right)+\varepsilon_{2} S\right) \stackrel{\sim}{-} \delta_{2} U \tag{3.12}
\end{equation*}
$$

In [4,7], when proving the equality $T_{\sigma_{1}+\sigma_{2}}=T_{\sigma_{1}} T_{\sigma_{2}}$ for a game with a simple motion, it was shown that a set of form (3.12) equals

$$
\begin{equation*}
\left(\varphi \varepsilon_{2}+\varepsilon_{2}\right) S \stackrel{*}{-}\left(\varphi \delta_{2}+\delta_{2}\right) U=\left(\varepsilon_{1}+\varepsilon_{2}\right) S \stackrel{*}{-}\left(\delta_{1}+\delta_{2}\right) U \tag{3.13}
\end{equation*}
$$

Substituting the values of p from (3.11) into formulas (3.10) and using notation (3.5) and (3.6), we obtain $\varepsilon_{1}+\varepsilon_{2}=\mu^{1 / 2} f_{1}\left(\sigma, t, y_{1}, y_{2}\right)$ and $\delta_{1}+\delta_{2}=f_{1}(\sigma$, $\left.t, y_{1}, y_{2}\right) \cdot f_{2}\left(\sigma, t, y_{1}, y_{2}\right)$. Consequently, set (3.13) and, therefore, the right-hand side of inclusion (3.9), coincide with the set on the right-hand side of inclusion (3.7). Thus, Condition B from Sect. 2 is fulfilled and the vector function $f(\sigma, t, y)$ has been defined for $t \geqslant 0, \sigma>0, y_{1} \geqslant 0$ and $y_{2} \geqslant 0$ by relations (3.5) and (3.6). From relations (3.5) and (3.6) and from assumption 4° we can obtain that limit (2.1) has the form

$$
\begin{aligned}
& F_{1}\left(t, y_{1}, y_{2}\right)=-\left[\rho(t) / 2 y_{2}{ }^{2}\right]+\alpha(t) / y_{2} \\
& F_{2}\left(t, y_{1}, y_{2}\right)=\rho(t) / 2 y_{2}
\end{aligned}
$$

for $t \geqslant 0, y_{1} \geqslant 0$ and $y_{2}>0$. These functions are not defined when $y_{2}=0$. Therefore, we fix an arbitrary number $\delta>0$ and as the set Y for which Conditions A, B and C were formulated in Sect. 2 we consider $y_{1} \geqslant 0, y_{2} \geqslant \delta$. Then functions (3.5), (3.6) and (3.14) and the family of sets (3.4) satisfy Conditions B and C on this set Y.

By assumption set S contains the null vector as an interior point. Using this we can show that the family of sets (3.4) satisfies Condition A.
Let $y_{1}(t)$ and $y_{2}(t)$ satisfy Eq. (2.2) with right-hand side (3.14) and initial conditions
$y_{1}(0)=0, y_{2}(0)=\delta$. Then on the basis of Theorem 1 the family of sets $W(t)$, which is obtained from (3.4) under the substitution $y_{1}=y_{1}(t)$ and $y_{2}=y_{2}(t)$, satisfies inclusion (1.4). In addition, as is seen from (1.3) and (3.4), W $(0)=B(0$,
$0, \delta) \subset Z$. Thus, the family of sets $W(t)$ found is a u-stable bridge leading onto target (1.3).

REFERENCES

1. Krasovskii, N. N. and Subbotin, A.I., Position Differential Games. Moscow, "Nauka", 1974.
2. Ushakov, V. N., Extremal strategies in differential games with integral constraints. PMM Vol. $36, ~ № 1,1972$.
3. Subbotin, A.I. and Ushakov, V.N., Alternative for an encounter-evasion differential game with integral constraints on the players' controls. PMM Vol. 39, N. 3 , 1975.
4. Pshenichnyi, B. N. and Sagaidak, M.I., On fixed-time differential games. Kibernetika, №2, 1970.
5. Kolmogorov, A.N. and Fomin, S. V., Elements of Function Theory and of Functional Analysis. Moscow, "Nauka", 1968.
6. Pontriagin, L. S., On linear differential games. 2. Dokl. Akad, Nauk SSSR, Vol. 175, №4, 1967.
7. Pshenichnyi, B. N., Game with simple motion and convex terminal set. Theory of optimal solutions. Tr. Inst. Kibernetiki Akad. Nauk Ukr. SSR, No3, 1969.

Translated by N. H. C.

